19209 measured reflections

 $R_{\rm int} = 0.060$

3512 independent reflections

2618 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-{1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-ylidene}-2-cyano-N-(2-methylphenyl)acetamide

Jian Wu

Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025 Guizhou, People's Republic of China Correspondence e-mail: jianwu2691@yahoo.com.cn

Received 23 August 2011; accepted 14 September 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.139; data-to-parameter ratio = 14.8.

In the title compound, C₁₉H₁₈N₅O, the imidazolidine ring makes dihedral angles of 87.62 (17) and 28.27 (11)° with the pyridine and benzene rings, respectively. An intramolecular N-H...O hydrogen bond is observed between the carbonyl O atom and an imidazolidine H atom. In the crystal, an intermolecular N-H···N hydrogen bond gives rise to a linear chain running along the b axis.

Related literature

For background to neonicotinoids and their biological activity, see: Shao et al. (2008); Nishimura et al. (1994); Mori et al. (2002); Ohno et al. (2009); Tomizawa et al. (2000); Wu et al. (2011).

Experimental

Crystal data

C19H18CIN5O $M_r = 367.83$ Monoclinic, $P2_1/c$ a = 16.2019 (18) Åb = 7.6240 (9) Å c = 14.7368 (18) Å $\beta = 97.007 (3)^{\circ}$

V = 1806.7 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 293 K0.26 \times 0.23 \times 0.21 mm

Data collection

```
Bruker APEXII CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1997)
  T_{\min} = 0.943, T_{\max} = 0.953
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	238 parameters
$wR(F^2) = 0.139$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
3512 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3A···N4 ⁱ	0.86	2.49	3.044 (3)	123
$N3-H3A\cdots O1$	0.86	2.07	2.659 (2)	126

Symmetry code: (i) x, y + 1, z.

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The author gratefully acknowledges the National Natural Science Foundation of China (Nos 20872021 and 21162004) and the Agricultural Scientific and Technological Project of Guizhou Province (No. 20103068) for financial support. The author also acknowledges the assistance of Professor O. L. Zhang of Guiyang Medical University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5220).

References

- Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Mori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2002). Pestic. Mngt Sci. 58, 190-196.
- Nishimura, K., Kanda, Y., Okazawa, A. & Ueno, T. (1994). Pestic. Biochem. Physiol. 50, 51-59.
- Ohno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476-482.
- Shao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513-6516.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem. 48, 6016-6024.
- Wu, J., Yang, S., Song, B. A., Bhadury, P. S., Hu, D. Y., Zeng, S. & Xie, H. P. (2011). J. Heterocycl. Chem. 48, 901-906.

supplementary materials

Acta Cryst. (2011). E67, o2697 [doi:10.1107/S1600536811037524]

(*E*)-2-{1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-ylidene}-2-cyano-*N*-(2-methylphenyl)acetamide

J. Wu

Comment

Neonicotinoids, an interesting class of insecticide known to act on the central nervous system of insects, are widely used in agriculture due to their broad spectrum activity and low mammalian toxicity. As a part of our ongoing investigation of neonicotinoids analogs, we presented a series of neonicotinoid analogs bearing amide moieties that exhibit good activity against *Nilaparvata lugens* at 100 mg/*L* (Wu *et al.*, 2011). However, the accurate configuration of the active compound in our previous work has not been reported. Herein, we report the crystal structure of the title compound, (*E*)-2-(1-((6-chloropyridin-3-yl)methyl)imidazolidin-2-ylidene)-2- cyano-*N*-(*o*-tolyl)acetamide. It is noteworthy that the crystal of neonicotinoid analog bearing an amide moiety was obtained for the first time.

In the molecule of the title compound (Fig. 1), the imidazoline ring makes dihedral angles of 87.62 (17) ° with pyridine ring and 28.27 (11) ° with benzene ring. An intramolecular N—H···O hydrogen bond is observed between the O atom of carbonyl and imidazoline H atom; The ststructure possesses an intramolecular N3—H3A···O1 hydrogen bond with N3—H3A = 0.86 Å, H3A—O1 = 2.0661 Å, N3—O1 = 2.659 (2) Å, and N—H···O = 125.44 °. In the crystal structure, there are N3—H3A···N4ⁱ hydrogen bonds and C—H··· π interactions between neighboring molecules, which with the length for bonds N3—H3A, H3A—N4, H3A—N4 were 0.86 Å, 2.4883 Å, 3.044 (3) Å and the angles for N—H···N, C8—H8B···*Cg*(2)ⁱⁱ were 123.03 ° and 113.20 °, respectively; Furthermore, the length for H8B···*Cg*(2)ⁱⁱ and C8···*Cg*(2)ⁱⁱ were 3.1386 Å and 3.632 (3) Å, the angle of C19—H12A···*Cg*(3)ⁱⁱⁱ is 130.96 °; In addition, the length of H12A···*Cg*(3)ⁱⁱⁱ and C19···*Cg*(3)ⁱⁱⁱ were 3.0384 Å and 3.827 (3) Å, respectively [symmetry codes: (i) x, -1 + y, z, (ii) x, -1 + y, z, (iii) x, 1 - y, 1 - z].

Experimental

A mixture of 2-cyano-3,3-bis(methylthio)-*N*-(*o*-tolyl)acrylamide (1 mmol) and *N*-((6-chloropyridin-3-yl) methyl) ethane-1,2-diamine (1 mmol) was stirred in refluxing ethanol (10 ml). The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was cooled to room temperature, block-shaped crystals were formed, which was filtered off, washed with ethanol and dried in the air.

Refinement

All H atoms were placed in calculated positions and refined as riding on the parent C atoms with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and $U_{iso}(H) = 1.2 U_{eq}$ (C, N).

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

(E)-2-{1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-ylidene}- 2-cyano-N-(2-methylphenyl)acetamide

Crystal data	
C ₁₉ H ₁₈ ClN ₅ O	F(000) = 768
$M_r = 367.83$	$D_{\rm x} = 1.352 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 19209 reflections
a = 16.2019 (18) Å	$\theta = 1.3 - 26.0^{\circ}$
b = 7.6240 (9) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 14.7368 (18) Å	T = 293 K
$\beta = 97.007 \ (3)^{\circ}$	Prism, colourless
$V = 1806.7 (4) \text{ Å}^3$	$0.26 \times 0.23 \times 0.21 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	3512 independent reflections
Radiation source: fine-focus sealed tube	2618 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.060$
φ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1997)	$h = -19 \rightarrow 19$
$T_{\min} = 0.943, T_{\max} = 0.953$	$k = -9 \rightarrow 9$
19209 measured reflections	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.139$	H-atom parameters constrained
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0717P)^2 + 0.3718P]$ where $P = (F_o^2 + 2F_c^2)/3$
3512 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
238 parameters	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$

0 restraints

 $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.48863 (12)	-0.2075 (2)	-0.41527 (13)	0.0530 (5)
C2	0.42330 (13)	-0.1992 (3)	-0.48356 (13)	0.0598 (5)
H2	0.4244	-0.2600	-0.5381	0.072*
C3	0.35610 (13)	-0.0979 (3)	-0.46850 (13)	0.0552 (5)
Н3	0.3105	-0.0890	-0.5132	0.066*
C4	0.35663 (11)	-0.0093 (2)	-0.38658 (12)	0.0477 (4)
C5	0.42631 (13)	-0.0274 (3)	-0.32411 (14)	0.0623 (6)
Н5	0.4278	0.0335	-0.2693	0.075*
C6	0.28226 (13)	0.0973 (3)	-0.36788 (15)	0.0641 (6)
H6A	0.2542	0.1407	-0.4254	0.077*
H6B	0.2437	0.0219	-0.3407	0.077*
N2	0.30409 (10)	0.2454 (2)	-0.30700 (11)	0.0570 (4)
C8	0.32548 (15)	0.5482 (3)	-0.28080 (15)	0.0673 (6)
H8A	0.3771	0.5860	-0.2461	0.081*
H8B	0.2989	0.6479	-0.3132	0.081*
C9	0.26236 (11)	0.2939 (2)	-0.23634 (12)	0.0497 (5)
C10	0.22032 (12)	0.1820 (2)	-0.18154 (13)	0.0506 (5)
C11	0.23108 (16)	-0.0018 (3)	-0.18395 (18)	0.0735 (6)
C12	0.17737 (11)	0.2533 (2)	-0.10901 (12)	0.0479 (4)
H12B	0.1949	-0.1608	0.0393	0.108 (10)*
H12C	0.1391	-0.2427	0.1011	0.117 (11)*
H12A	0.1041	-0.2307	-0.0043	0.133 (11)*
C13	0.10396 (11)	0.1528 (3)	0.02201 (14)	0.0540 (5)
C14	0.07069 (13)	0.3118 (3)	0.04596 (15)	0.0631 (6)
H14	0.0718	0.4087	0.0078	0.076*
C15	0.03602 (16)	0.3252 (4)	0.12656 (17)	0.0790 (7)
H15	0.0133	0.4313	0.1424	0.095*
C16	0.03473 (18)	0.1828 (4)	0.18372 (18)	0.0889 (8)
H16	0.0118	0.1928	0.2384	0.107*
C17	0.06735 (16)	0.0262 (4)	0.15965 (18)	0.0836 (7)
H17	0.0658	-0.0694	0.1986	0.100*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C18	0.10247 (13)	0.0055 (3)	0.07951 (16)	0.0652 (6)
C19	0.13699 (18)	-0.1683 (3)	0.0544 (2)	0.0883 (8)
N1	0.49193 (11)	-0.1261 (2)	-0.33656 (12)	0.0644 (5)
C7	0.33994 (16)	0.4000 (3)	-0.34602 (16)	0.0731 (7)
H7A	0.3124	0.4240	-0.4069	0.088*
H7B	0.3989	0.3835	-0.3493	0.088*
N3	0.27094 (11)	0.4658 (2)	-0.22247 (11)	0.0592 (4)
H3A	0.2465	0.5223	-0.1828	0.071*
N4	0.2387 (2)	-0.1517 (3)	-0.1790 (2)	0.1184 (10)
N5	0.13992 (11)	0.1309 (2)	-0.05957 (12)	0.0611 (5)
H5A	0.1381	0.0262	-0.0814	0.073*
O1	0.17555 (9)	0.41125 (17)	-0.09060 (9)	0.0620 (4)
Cl1	0.57548 (4)	-0.33450 (9)	-0.43072 (4)	0.0805 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0587 (11)	0.0458 (10)	0.0560 (11)	0.0075 (8)	0.0131 (9)	-0.0006 (9)
C2	0.0789 (13)	0.0558 (12)	0.0450 (11)	0.0146 (10)	0.0080 (9)	-0.0111 (9)
C3	0.0672 (12)	0.0540 (11)	0.0427 (10)	0.0125 (9)	-0.0005 (8)	-0.0057 (8)
C4	0.0561 (10)	0.0442 (10)	0.0431 (10)	0.0042 (8)	0.0076 (8)	-0.0042 (8)
C5	0.0650 (12)	0.0714 (14)	0.0496 (11)	0.0127 (10)	0.0032 (9)	-0.0184 (10)
C6	0.0623 (12)	0.0744 (14)	0.0548 (12)	0.0141 (10)	0.0040 (9)	-0.0206 (10)
N2	0.0692 (10)	0.0508 (10)	0.0532 (9)	0.0108 (8)	0.0160 (8)	-0.0081 (8)
C8	0.0861 (15)	0.0555 (12)	0.0639 (13)	0.0111 (11)	0.0236 (11)	0.0056 (10)
C9	0.0564 (10)	0.0471 (11)	0.0452 (10)	0.0146 (8)	0.0046 (8)	-0.0048 (8)
C10	0.0572 (11)	0.0408 (10)	0.0540 (11)	0.0068 (8)	0.0072 (8)	-0.0082 (8)
C11	0.0889 (16)	0.0509 (14)	0.0875 (16)	0.0048 (11)	0.0375 (13)	-0.0124 (11)
C12	0.0520 (10)	0.0436 (10)	0.0473 (10)	0.0052 (8)	0.0027 (8)	-0.0048 (8)
C13	0.0453 (10)	0.0568 (12)	0.0600 (12)	-0.0044 (8)	0.0067 (8)	-0.0024 (9)
C14	0.0614 (12)	0.0642 (14)	0.0654 (13)	0.0096 (10)	0.0145 (10)	0.0006 (10)
C15	0.0834 (16)	0.0865 (18)	0.0714 (15)	0.0118 (13)	0.0267 (13)	-0.0074 (13)
C16	0.0936 (19)	0.108 (2)	0.0700 (16)	0.0016 (16)	0.0287 (14)	0.0055 (16)
C17	0.0858 (17)	0.0905 (19)	0.0765 (17)	-0.0106 (14)	0.0182 (14)	0.0223 (14)
C18	0.0568 (11)	0.0588 (13)	0.0791 (15)	-0.0077 (10)	0.0051 (11)	0.0058 (11)
C19	0.0933 (19)	0.0552 (15)	0.117 (2)	-0.0042 (13)	0.0150 (16)	0.0151 (15)
N1	0.0613 (10)	0.0739 (12)	0.0561 (10)	0.0134 (9)	-0.0004 (8)	-0.0134 (9)
C7	0.0949 (17)	0.0642 (14)	0.0654 (14)	0.0189 (12)	0.0303 (12)	0.0051 (11)
N3	0.0820 (11)	0.0422 (9)	0.0569 (10)	0.0107 (8)	0.0229 (8)	-0.0018 (7)
N4	0.178 (3)	0.0454 (13)	0.150 (2)	0.0096 (14)	0.092 (2)	-0.0105 (13)
N5	0.0693 (11)	0.0447 (9)	0.0724 (12)	-0.0027 (8)	0.0210 (9)	-0.0106 (8)
01	0.0873 (10)	0.0426 (8)	0.0596 (9)	0.0034 (7)	0.0229 (7)	-0.0087 (6)
Cl1	0.0730 (4)	0.0846 (5)	0.0850 (5)	0.0292 (3)	0.0141 (3)	-0.0110 (3)

Geometric parameters (Å, °)

C1—N1	1.311 (3)	C10—C12	1.450 (3)
C1—C2	1.370 (3)	C11—N4	1.151 (3)
C1—Cl1	1.7458 (19)	C12—O1	1.236 (2)

C2—C3	1.375 (3)	C12—N5	1.370 (3)
С2—Н2	0.9300	C13—C14	1.390 (3)
C3—C4	1.383 (3)	C13—N5	1.408 (3)
С3—Н3	0.9300	C13—C18	1.408 (3)
C4—C5	1.374 (3)	C14—C15	1.378 (3)
C4—C6	1.506 (3)	C14—H14	0.9300
C5—N1	1.334 (3)	C15—C16	1.376 (4)
С5—Н5	0.9300	С15—Н15	0.9300
C6—N2	1.459 (3)	C16—C17	1.370 (4)
С6—Н6А	0.9700	С16—Н16	0.9300
С6—Н6В	0.9700	C17—C18	1.381 (4)
N2—C9	1.360 (2)	С17—Н17	0.9300
N2—C7	1.462 (3)	C18—C19	1.502 (4)
C8—N3	1.449 (3)	C19—H12B	0.9917
C8—C7	1.520 (3)	C19—H12C	0.8887
C8—H8A	0.9700	C19—H12A	1.0711
С8—Н8В	0.9700	С7—Н7А	0.9700
C9—N3	1.331 (2)	С7—Н7В	0.9700
C9—C10	1.407 (3)	N3—H3A	0.8600
C10-C11	1.413 (3)	N5—H5A	0.8600
N1 C1 C2	124.94 (18)	N5 C12 C10	114.85 (16)
$N_1 = C_1 = C_2$	115 56 (15)	C_{14} C_{13} N5	114.85(10) 122.25(10)
$C_2 = C_1 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	113.50(15)	$C_{14} = C_{13} = C_{13}$	122.23(19) 120.5(2)
$C_2 = C_1 = C_1$	117.50 (15)	N5 C12 C18	120.3(2)
$C_1 = C_2 = C_3$	117.00 (18)	13 - 13 - 13	117.29 (19)
$C_1 = C_2 = H_2$	121.2	C15 - C14 - C13	119.7 (2)
$C_3 = C_2 = H_2$	121.2	C13—C14—H14	120.2
$C_2 = C_3 = C_4$	119.07 (18)	C13 - C14 - H14	120.2
C2-C3-H3	120.2	C10 - C15 - C14	120.5 (2)
C4—C3—H3	120.2	C16C15H15	119.8
$C_{5} = C_{4} = C_{3}$	110.93 (17)	C14—C15—H15	119.8
$C_{3} = C_{4} = C_{6}$	122.82(17)	C1/-C16-C15	119.6 (2)
C3-C4-C6	120.23(17)	C1/C16H16	120.2
NI-C5-C4	124.64 (18)	C15C16H16	120.2
NI-C5-H5	117.7	C16—C17—C18	122.2 (2)
С4—С5—Н5	117.7		118.9
N2—C6—C4	113.00 (17)	С18—С17—Н17	118.9
N2—C6—H6A	109.0	C17—C18—C13	117.6 (2)
С4—С6—Н6А	109.0	C17—C18—C19	121.1 (2)
N2—C6—H6B	109.0	C13—C18—C19	121.4 (2)
С4—С6—Н6В	109.0	C18—C19—H12B	113.3
Н6А—С6—Н6В	107.8	C18—C19—H12C	110.6
C9—N2—C6	125.12 (18)	H12B—C19—H12C	105.3
C9—N2—C7	109.92 (16)	C18—C19—H12A	115.3
C6—N2—C7	117.40 (17)	H12B—C19—H12A	103.6
N3—C8—C7	101.83 (18)	H12C—C19—H12A	108.1
N3—C8—H8A	111.4	C1—N1—C5	116.21 (17)
С7—С8—Н8А	111.4	N2—C7—C8	104.54 (17)
N3—C8—H8B	111.4	N2—C7—H7A	110.8
С7—С8—Н8В	111.4	С8—С7—Н7А	110.8

supplementary materials

H8A—C8—H8B	109.3	N2—C7—H7B	110.8
N3—C9—N2	109.43 (17)	С8—С7—Н7В	110.8
N3—C9—C10	123.91 (16)	Н7А—С7—Н7В	108.9
N2	126.56 (17)	C9—N3—C8	113.30 (16)
C9—C10—C11	121.14 (18)	C9—N3—H3A	123.3
C9—C10—C12	120.36 (16)	C8—N3—H3A	123.3
C11-C10-C12	117.51 (19)	C12—N5—C13	129.02 (17)
N4—C11—C10	174.7 (3)	C12—N5—H5A	115.5
O1—C12—N5	121.52 (17)	C13—N5—H5A	115.5
O1-C12-C10	123.60 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N3—H3A···N4 ⁱ	0.86	2.49	3.044 (3)	123.
N3—H3A···O1	0.86	2.07	2.659 (2)	126.
Symmetry codes: (i) $x, y+1, z$.				

Fig. 1